Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 4: 521-531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34401748

RESUMO

Photoacoustic spectroscopy is applied to evaluate the impact of Moringa at different concentrations (0, 1.25, 2.5, 5 and 10%) on the elaboration, sanity, texture, and color of wheat bread. It was found that: i) Photoacoustic signal amplitude values of bread significantly increase from 37 to 90% when moringa powder concentration raises from 1.25% to 10%, at 300 nm wavelength. ii) Comparing the photoacoustic signal values at 300, 330, and 370 nm wavelengths, produced by the different bread types, there were statistically significant differences. iii) The sanitary quality of bread mixed with a 2.5% of moringa is relatively higher than the ones obtained for other concentrations, such that the number of fungal colonies were reduced by 99% in comparison with the control bread without moringa, after six days of storage. Moringa at 2.5% of concentration could thus improve the sanitary quality of wheat bread. iv) The addition of moringa for making bread slows down its textural changes (hardness, elasticity, cohesiveness, resilience, and chewiness) during storage. v) Finally, the highest correlation between the photoacoustic amplitude and the moringa concentration occurs at the wavelengths of 300 and 330 nm, which could be related to significant changes in the content of flavonoids and phenolic acids.

2.
Sci Adv ; 6(40)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32998899

RESUMO

Improving heat dissipation in increasingly miniature microelectronic devices is a serious challenge, as the thermal conduction in nanostructures is markedly reduced by increasingly frequent scattering of phonons on the surface. However, the surface could become an additional heat dissipation channel if phonons couple with photons forming hybrid surface quasiparticles called surface phonon-polaritons (SPhPs). Here, we experimentally demonstrate the formation of SPhPs on the surface of SiN nanomembranes and subsequent enhancement of heat conduction. Our measurements show that the in-plane thermal conductivity of membranes thinner than 50 nm doubles up as the temperature rises from 300 to 800 kelvin, while thicker membranes show a monotonic decrease. Our theoretical analysis shows that these thickness and temperature dependencies are fingerprints of SPhP contribution to heat conduction. The demonstrated thermal transport by SPhPs can be useful as a previously unidentified channel of heat dissipation in a variety of fields including microelectronics and silicon photonics.

3.
Sci Rep ; 9(1): 14687, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604979

RESUMO

Hysteresis loops exhibited by the thermal properties of undoped and 0.8 at.% W-doped nanocrystalline powders of VO2 synthesized by means of the solution combustion method and compacted in pellets, are experimentally measured by photothermal radiometry. It is shown that: (i) the W doping reduces both the hysteresis loops of VO2 and its transition temperature up to 15 °C. (ii) The thermal diffusivity decreases (increases) until (after) the metallic domains become dominant in the VO2 insulating matrix, such that its variation across the metal-insulation transition is enhanced by 23.5% with W-0.8 at.% doping. By contrast, thermal conductivity (thermal effusivity) increases up to 45% (40%) as the metallic phase emerges in the VO2 structure due to the insulator-to-metal transition, and it enhances up to 11% (25%) in the insulator state when the local rutile phase is induced by the tungsten doping. (iii) The characteristic peak of the VO2 specific heat capacity is observed in both heating and cooling processes, such that the phase transition of the 0.8 at.% W-doped sample requires about 24% less thermal energy than the undoped one. (iv) The impact of the W doping on the four above-mentioned thermal properties of VO2 mainly shows up in its insulator phase, as a result of the distortion of the local lattice induced by the electrons of tungsten. W doping at 0.8 at.% thus enhances the VO2 capability to transport heat but diminishes its thermal switching efficiency.

4.
Sci Rep ; 8(1): 8479, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855507

RESUMO

Hysteresis loops in the emissivity of VO2 thin films grown on sapphire and silicon substrates by a pulsed laser deposition process are experimentally measured through the thermal-wave resonant cavity technique. Remarkable variations of about 43% are observed in the emissivity of both VO2 films, within their insulator-to-metal and metal-to-insulator transitions. It is shown that: i) The principal hysteresis width (maximum slope) in the VO2 emissivity of the VO2 + silicon sample is around 3 times higher (lower) than the corresponding one of the VO2 + sapphire sample. VO2 synthesized on silicon thus exhibits a wider principal hysteresis loop with slower MIT than VO2 on sapphire, as a result of the significant differences on the VO2 film microstructures induced by the silicon or sapphire substrates. ii) The hysteresis width along with the rate of change of the VO2 emissivity in a VO2 + substrate sample can be tuned with its secondary hysteresis loop. iii) VO2 samples can be used to build a radiative thermal diode able to operate with a rectification factor as high as 87%, when the temperature difference of its two terminals is around 17 °C. This record-breaking rectification constitutes the highest one reported in literature, for a relatively small temperature change of diode terminals.

5.
Phys Chem Chem Phys ; 17(12): 8125-37, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25729791

RESUMO

The effect of the structural inhomogeneity and oxygen defects on the thermal conductivity of polycrystalline aluminum nitride (AlN) thin films deposited on single-crystal silicon substrates is experimentally and theoretically investigated. The influence of the evolution of crystal structure, grain size, and out-of plane disorientation along the cross plane of the films on their thermal conductivity is analyzed. The impact of oxygen-related defects on thermal conduction is studied in AlN/AlN multilayered samples. Microstructure, texture, and grain size of the films were characterized by X-ray diffraction and scanning and transmission electron microscopy. The measured thermal conductivity obtained with the 3-omega technique for a single and multiple layers of AlN is in fairly good agreement with the theoretical predictions of our model, which is developed by considering a serial assembly of grain distributions. An effective thermal conductivity of 5.92 W m(-1) K(-1) is measured for a 1107.5 nm-thick multilayer structure, which represents a reduction of 20% of the thermal conductivity of an AlN monolayer with approximately the same thickness, due to oxygen impurities at the interface of AlN layers. Our results show that the reduction of the thermal conductivity as the film thickness is scaled down, is strongly determined by the structural inhomogeneities inside the sputtered films. The origin of this non-homogeneity and the effect on phonon scattering are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...